EMPIAR-10592
CEM500K - A large-scale heterogeneous unlabeled cellular electron microscopy image dataset for deep learning. [496544 micrographs in TIFF format]
Publication:

CEM500K - A large-scale heterogeneous unlabeled cellular electron microscopy image dataset for deep learning.

Conrad RW, Narayan K

bioRxiv (2020)

Related EMDB entry:
Deposited:
2020-12-11
Released:
2020-12-21
Last modified:
2022-01-26
Imageset size:
16.61 GB
Imageset DOI:
Experimental metadata:
Download xml json
Contains:
  • micrographs - single frame
1. CEM500K
Category:
micrographs - single frame
Image format:
TIFF
No. of images or tilt series:
496544
Image size:
(224, 224)
Pixel type:
UNSIGNED BYTE
Pixel spacing:
(None, None)
Details:
CEM500K is a collection of 496,544 images (224x224 unsigned 8 bit .tiff) of cellular EM images, curated specifically for deep learning applications. See for more details: https://doi.org/10.1101/2020.12.11.421792

data/metadata/cem500k_image_metadata.csv file contains the details of each image file in CEM500K: image_name, source_experiment, doi, imaging_mode, organism, tissue

ResNet50 weights pretrained on CEM500K using MoCoV2 algorithm in PyTorch format are stored in data/pretrained_models/cem500k_mocov2_resnet50_200ep_pth.tar
Files:
Loading...
Abe KM, Li G, He Q, Grant T, Lim CJ. (2024)
Fenn KL, Horne JE, Crossley JA, Böhringer N, Horne RJ, Schäberle TF, Calabrese AN, Radford SE, Ranson NA. (2024)
Hicks CW, Rahman S, Gloor SL, Fields JK, Husby NL, Vaidya A, Maier KE, Morgan M, Keogh MC, Wolberger C. (2024)
Gusach A, Lee Y, Khoshgrudi AN, Mukhaleva E, Ma N, Koers EJ, Chen Q, Edwards PC, Huang F, Kim J, Mancia F, Veprintsev DB, Vaidehi N, Weyand SN, Tate CG. (2024)
Kofler L, Grundmann L, Gerhalter M, Prattes M, Merl-Pham J, Zisser G, Grishkovskaya I, Hodirnau VV, Vareka M, Breinbauer R, Hauck SM, Haselbach D, Bergler H. (2024)